skip to main content


Search for: All records

Creators/Authors contains: "Ji, Zuowei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Carbon nanodots (CNDs) have shown good antioxidant capabilities by scavenging oxidant free radicals such as diphenyl-1-picrylhydrazyl radical (DPPH•) and reactive oxygen species. While some studies suggest that the antioxidation activities associate to the proton donor role of surface active groups like carboxyl groups (–COOH), it is unclear how exactly the extent of oxidant scavenging potential and its related mechanisms are influenced by functional groups on CNDs’ surfaces. In this work, carboxyl and the amino functional groups on CNDs’ surfaces are modified to investigate the individual influence of intermolecular interactions with DPPH• free radical by UV-Vis spectroscopy and electrochemistry. The results suggest that both the carboxyl and the amino groups contribute to the antioxidation activity of CNDs through either a direct or indirect hydrogen atom transfer reaction with DPPH•. 
    more » « less
  3. Abstract

    In this work, glucose oxidase (GOx) cross‐linking to a single‐wall carbon nanotubes (SWCNTs)‐poly(ethylenimine) (PEI) matrix is investigated using cyclic voltammetry (CV) for its direct electrochemistry and kinetics with presence of glucose. The electrochemistry of the bound flavin cofactor, flavin adenine dinucleotide (FAD) of the GOx, is impeded by glucose and recovered at absence of glucose, whereas a non‐specific sugar (e. g. sucrose) has no such effect. The Faradaic current of the GOx in CV decreases when the concentration of glucose increases, while the calculated electron transfer (ET) rate constant (k0) of the GOx presents a monotonic increment manner up to 144 % at 70 mM glucose concentration vs. absence of glucose in a deaerated electrolyte solution. Thek0and Faradaic current changes demonstrate a strong linear relationship to logarithmic value of glucose concentration up to 20 mM. These results suggest that the entrapped GOx, when exposing to glucose, becomes deactivated in the direct electrochemistry. Further mechanistic analysis suggests the ET reaction of GOx shows a responsive correlation to the non‐ergodicity of those active GOx sites. A control experiment using pure FAD immobilized in the matrix doesn't show responses to glucose addition.

     
    more » « less